ПРОДУКЦИЯ

НИХРОМ

ФЕХРАЛЬ

НИХРОМ В ИЗОЛЯЦИИ

ТИТАН

ВОЛЬФРАМ

МОЛИБДЕН

КОБАЛЬТ

ТЕРМОПАРЫ

ТЕРМОПАРЫ НАГРЕВОСТОЙКИЕ

НИКЕЛЬ

МОНЕЛЬ

КОНСТАНТАН

МЕЛЬХИОР

ТВЕРДЫЕ СПЛАВЫ

ПОРОШКИ МЕТАЛЛОВ

НЕРЖАВЕЮЩАЯ СТАЛЬ

ЖАРОПРОЧНЫЕ СПЛАВЫ

ФЕРРОСПЛАВЫ

ОЛОВО

ТАНТАЛ

НИОБИЙ

ВАНАДИЙ

ХРОМ


 
Внимание! Если Вы обнаружили ошибку на сайте, то выделите ее и нажмите Ctrl+Enter.

 

8 (800) 200-52-75
(495) 366-23-24
(495) 504-95-54
(495) 642-41-95
logo
(800) 200-52-75
(495) 366-23-24
(495) 504-95-54
e-mail: info@metotech.ru

Производство изделий и материалов методом порошковой металлургии

В статье рассматриваются методы порошковой металлургии для производства различных изделий. Описаны конкретные методы, их достоинства и недостатки, получаемые продукты, а также их свойства.

Порошковая металлургия является одной из отраслей металлургической промышленности, включающей в себя ряд малоотходных способов изготовления изделий и материалов из порошков различных металлов в чистом виде либо в составе определенных композиций. Технология имеет общие черты с керамическим производством, поэтому продукция, полученная посредством данного метода, нередко именуется металлокерамической, или просто металлокерамикой. Технология получения металлокерамики особенно широко применяется для массового производства, позволяя получать без дополнительной обработки, а значит, и без отходов, изделия высоких классов точности. Метод порошковой металлургии востребован также в случаях, когда он является единственной возможностью наделить изготавливаемую продукцию теми или иными уникальными свойствами.

Применяемые порошки и способы их получения

Получение металлических порошков – самый затратный и трудоемкий этап производственного процесса. При этом набор заданных эксплуатационных характеристик определяется физико-химическими свойствами, насыпной плотностью, размерами частиц и рядом других функциональных критериев применяемых порошков.

К основным промышленным методам получения порошков металлов относятся:

  • метод электролиза (электролитический метод) с осаждением на катоде металлов из растворов/расплавов под воздействием постоянного тока (порошки электролитические ПЭ);
  • метод карбонильной диссоциации – разложение карбонилов на металлическую порошковую фракцию и газообразный монооксид углерода (СО) (порошки карбонильные ПК);
  • метод химического восстановления металла из первичного сырья (руд, окалины и т.п.).

Методом электролиза вырабатывают, в частности, вольфрамовый порошок (W) электролитический, никелевый порошок (Ni) электролитический, а также порошки:

  • железа (Fe) электролитический;
  • меди (Cu) электролитический;
  • титана (Ti) электролитический;
  • циркония (Zr) электролитический;
  • ниобия (Nb) электролитический;
  • тантала (Та) электролитический;
  • урана (U) электролитический.

Путем разложения карбонилов получают, в частности, никелевый порошок (Ni) карбонильный, вольфрамовый порошок (W) карбонильный и молибденовый порошок (Mo) карбонильный, а также карбонильный порошок железа (Fe).

Методом химического восстановления получают кобальтовый порошок (Co), никелевый порошок (Ni), вольфрамовый порошок (W), молибденовый порошок (Mo), а также порошки железа (Fe), меди (Cu), ниобия (Nb) и других металлов.

Технологические этапы производственного процесса

Техпроцесс для уже изготовленных порошков включает в себя четыре важнейшие стадии, а именно:

  • смешивание;
  • формовка;
  • спекание;
  • калибровка.

На этапе смешивания из металлических порошков с различным химико-гранулометрическим составом (возможны неметаллические порошковые добавки) готовят однородную порошкообразную субстанцию – шихту.

Этап формовки заключается в преобразовании полученной сыпучей шихты в достаточно прочные первичные заготовки пористой структуры. Наиболее распространенным видом формовки является способ холодного прессования, когда шихту, засыпаемую в специальные пресс-формы, спрессовывают под давлением от 32 до 1100 МПа на механических, пневматических или гидравлических прессах.

Следующим технологическим этапом метода порошковой металлургии является термообработка (спекание) сформованных заготовок при температурах более низких, чем t° плавления, в результате чего за счет когезии (когезия - связь между молекулами (атомами, ионами) внутри тела в пределах одной фазы) частицы порошка преобразуются в единый монолит на молекулярном уровне. При этом в заготовках из однородного металлического порошка максимальный эффект достигается в режиме, составляющем 72–92% t° плавления металла. При спекании смесей на основе цементированных карбидов применяется температурный режим, близкий к t° плавления связующего компонента. Чтобы не допустить окисления, процесс спекания во всех случаях проводят в защитной вакуумной либо газовой среде (Н, СО, N, Ar).

Заключительной стадией процесса является калибрование получаемых изделий с целью обеспечить требуемую точность заданных габаритных параметров, повысить степень прочности и класс чистоты поверхности.

Продукты порошковой металлокерамики и области их использования

Металлокерамические материалы, изготавливаемые при помощи метода порошковой металлургии, называются спеченными. Все спеченные материалы подразделяют на ряд функциональных категорий.

Конструкционная металлокерамика, обладающая высокими механическими характеристиками, используется в машиностроении для производства высоконагруженных деталей (шестерни, зубчатые колеса, червячные пары, клапаны, муфты и т.д.).

Структура антифрикционных металлокерамических материалов построена таким образом, что в ней органично сочетаются твердая матрица и мягкий наполнитель, чего можно добиться лишь порошковым методом. Антифрикционные материалы имеют стабильно невысокий коэффициент трения и хорошо прирабатываются. Из них производят, в частности, большинство разновидностей подшипников скольжения.

Фрикционную металлокерамику отличают прочность и высокие показатели стойкости к износу. Поэтому она находит особенно широкое применение в станкостроении при изготовлении узлов передачи кинетической энергии.

Фильтрующие спеченные материалы, в отличие от получаемых иными способами, имеют более оптимальные значения термостойкости, очистительной способности, абразивной износостойкости и прочих функциональных параметров. Помимо непосредственно фильтров, из них также производят специальные уплотнительные прокладки, элементы пламегасителей, систем антиобледенения, конденсаторов и целый ряд других изделий.

Порошковые твердые сплавы обладают композитной структурой, включающей в себя частицы тугоплавких карбидов высокой твердости (WC, TiC и т.д.) и пластичное металлическое связующее (чаще всего зерна Co). Их применяют для производства активных компонентов металлорежущего, штамповочного, бурового инструмента.

К категории высокотемпературной порошковой металлокерамики принадлежат сплавы на базе тугоплавких металлов (W, Mo, Nb, Та, Zr, Re, Ti и др.). Они востребованы в космической, авиационной, судостроительной, электротехнической, радиоэлектронной и многих других отраслях. Электротехническая порошковая металлокерамика – это так называемые псевдосплавы сложной композиционной структуры, получение которых иными способами не представляется возможным. Они незаменимы для изготовления электрических контактных групп, на их основе производят постоянные магниты, ферриты, другие токопроводящие материалы и диэлектрики.

Порошковая металлокерамика для ядерной энергетики с набором особых свойств (на основе В, Hf, Cd, Zr, W, Pb, U, РЗЭ и т.д.) применяется в изготовлении регуляционных стержней, ТВЭЛов, замедлителей, поглотителей, других компонентов атомных реакторов.

Изделия порошковой металлургии

Рисунок 1. Изделия порошковой металлургии.

Достоинства и недостатки метода порошковой металлургии в сравнении с другими технологиями

Производство изделий из спеченных материалов имеет целый ряд преимуществ по сравнению с традиционными технологиями металлообработки (резание, литье, ковка, штамповка и т.д).

К важнейшим достоинствам порошковой металлургии можно причислить:

  • невозможность изготовления многих видов продукции иными методами, кроме порошкового;
  • безотходность (с пользой задействуется до 95-98% исходного материала);
  • наличие высоких эксплуатационных характеристик получаемых изделий;
  • экономичность, особенно при массовом производстве, вследствие относительной простоты технологии (за исключением этапа изготовления порошков).

Однако порошковая металлургия не избавлена и от определенных недостатков, к которым, в частности, относятся:

  • сложность техпроцесса получения металлических порошков и, как следствие, их высокая себестоимость;
  • необходимость спекания в защитно-восстановительных средах, что также повышает себестоимость продуктов порошковой металлокерамики;
  • сложность производства заготовок обширных габаритов и криволинейных конфигураций.

Порошковая металлургия являясь одним из относительно новых направлений современного материаловедения, развивается стремительными темпами. Вот почему ее немногочисленные недостатки вряд ли следует воспринимать в качестве постоянно действующих факторов. По мере дальнейшего становления научно-технического прогресса метод порошковой металлургии будет становиться все более значимым для повседневной жизнедеятельности.

"Метотехника"
e-mail: info@metotech.ru

телефоны:
8 (800) 200-52-75
(495) 366-23-24
(495) 504-95-54
(495) 642-41-95

Нихром :: Фехраль :: Нихром в изоляции :: Титан :: Вольфрам :: Молибден :: Кобальт :: Термопары :: Термопары нагревостойкие :: Никель :: Монель :: Константан :: Мельхиор :: Твердые сплавы :: Порошки металлов :: Нержавеющая сталь :: Жаропрочные сплавы :: Ферросплавы :: Обзор цен на металлы и ферросплавы :: Карта сайта :: Скачать браузер Нихром
       Rambler's Top100               Яндекс цитирования