ПРОДУКЦИЯ

НИХРОМ

ФЕХРАЛЬ

НИХРОМ В ИЗОЛЯЦИИ

ТИТАН

ВОЛЬФРАМ

МОЛИБДЕН

КОБАЛЬТ

ТЕРМОПАРЫ

ТЕРМОПАРЫ НАГРЕВОСТОЙКИЕ

НИКЕЛЬ

МОНЕЛЬ

КОНСТАНТАН

МЕЛЬХИОР

ТВЕРДЫЕ СПЛАВЫ

ПОРОШКИ МЕТАЛЛОВ

НЕРЖАВЕЮЩАЯ СТАЛЬ

ЖАРОПРОЧНЫЕ СПЛАВЫ

ФЕРРОСПЛАВЫ

ОЛОВО

ТАНТАЛ

НИОБИЙ

ВАНАДИЙ

ХРОМ

РЕНИЙ

ПРЕЦИЗИОННЫЕ СПЛАВЫ

ЦИРКОНИЙ


 
Внимание! Если Вы обнаружили ошибку на сайте, то выделите ее и нажмите Ctrl+Enter.

 

8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95
logo
(800) 200-52-75
(495) 366-00-24
(495) 504-95-54

Применение циркония в ядерной промышленности

В статье рассказывается о применении циркония и сплавов на его основе в атомной энергетике.

Цирконий – стойкий к коррозии, пластичный и химически инертный металл, устойчив в воде и водяных парах до +300 °C. Цирконий широко используется в различных сферах промышленности, но особенно ценна его роль в атомной энергетике. На долю нашей страны приходится порядка 10 % мировых запасов циркония, а это третье место в мире. Он обнаружен в Мурманской, Тамбовской, Томской, Нижегородской областях. В ядерной промышленности применяется еще с середины 20 в.

Как цирконий был открыт для атомной энергетики

Хотя «бум» на цирконий начался в США, его изучение в СССР пошло по собственному и весьма плодотворному пути. Ученые ВНИИНМ (сейчас это один из ведущих институтов «Росатома») в 50 гг. прошлого века не только анализировали состав и свойства металла (об этом в мире было мало известно), но и разрабатывали способы получения, плавки, переплавки в слитки, обработки циркония для нужд атомной промышленности.

К слову, курировал работы по цирконию великий советский ученый-металловед Андрей Бочвар. Необходимо было получить кондиционный цирконий реакторной чистоты (значительно очищенный от гафния и прочих примесей), чем и занималась отдельная лаборатория. Здесь изучались и создавались циркониевые материалы для работы в реакторах различного типа с водой, гелием, пароводяной смесью и другими теплоносителями.

Цирконий реакторной чистоты получали магниетермическим, электролитическим, йодидным способом. Его сплавы шли на изделия для разных ядерных реакторов, узлы активных зон, твэлы – то есть на главные конструктивные элементы ядерного реактора. Чистый цирконий не может использоваться для твэлов, поскольку при температуре воды и пара 300-400 °С прочностные характеристики и коррозионная стойкость металла снижаются. Именно поэтому для оболочек твэлов нужны сплавы на базе циркония.

Почему цирконий начали применять в ядерной промышленности

Цирконий имеет высокую (2125 K) температуру плавления и малое сечение захвата медленных нейтронов. Чем медленнее двигаются нейтроны, тем легче возникают реакции превращения элементов. Поэтому из циркония и его сплавов изготавливают различные конструктивные элементы ядерных реакторов (тепловыделяющие элементы, сборки и пр.).

Чтобы уменьшить загрузку ядерного топлива в реакторах на тепловых (медленных) нейтронах, как раз в активной зоне и нужны конструкционные материалы с малым сечением радиационного захвата нейтронов. Это одно из главных условий их эффективной работы. Плюс следует выбрать металлы с радиационной, коррозионной стойкостью, нужными механическими свойствами.

Всем требуемым качествам и отвечает цирконий. Его сплавы также обладают высокой коррозионной стойкостью к воде и пару. А металлоподобный гидрид циркония (соединение Zr с водородом) применяется в качестве замедлителя нейтронов в тех же реакторах на тепловых нейтронах.

Какие сплавы с цирконием применяются в ядерной промышленности

Отечественные ученые после долгих и серьезных изысканий пришли к выводу, что добавки Nb (ниобия) оптимальны для ядерной сферы за счет его положительного воздействия на пластичность и прочность Zr. Ниобий имеет небольшое сечение захвата нейтронов, он упрочняет цирконий, снижает поглощение им водорода и улучшает коррозионную стойкость.

Ниобийсодержащие сплавы (Э110, 125) стали наиболее популярными для изделий в активной зоне реактора. Они используются для оболочек твэлов и иных деталей тепловыделяющих сборок в реакторах с водой под давлением при температуре до +350 °С.

Добавки - титана и алюминия, как показали дальнейшие исследования, негативно сказывались на стойкости к коррозии в высокотемпературной воде. Точно также из потенциальных легирующих компонентов были исключены кремний, германий, ванадий, никель и многие другие. Фактически оказалось, что для легирования в Zr можно добавлять лишь ниобий, олово, железо и хром.

Результаты научных исследований сплавов циркония со времен СССР до наших дней

Советские исследования были дополнены в современный период новейшими опытно-конструкторскими и научными работами, что свело фактически к нулю количество твэлов с дефектами. Усовершенствованный и доработанный советский сплав с 1% Nb применяется в водно-паровых реакторах (при температуре работы +300 °С) повсеместно.

Сплав 2,5 % с ниобием широко используется в тепловыделяющих сборках. Сейчас сплав Zr1% Nb идет в одном состоянии для оболочек твэлов — отожженном при температуре 580 °С (Э110) или при 620 градусах (110К) перед последней холодной прокаткой. Так обеспечивается структура циркония, которая максимально близка к полностью рекристаллизованной, и гарантируется должная пластичность и коррозионная стойкость металла. Также сплав с 1 % ниобием отличает и наибольшее сопротивление радиационным ползучести и росту коррозии под напряжением в атмосфере газовых продуктов деления топлива.

Тепловыделяющая сборка (ТВС)

Рисунок 1. Тепловыделяющая сборка (ТВС)

Какие требования предъявляются к циркониевым сплавам и изделиям из них в ядерной энергетике

  1. Коррозионная стойкость на весь срок эксплуатации твэлов.
  2. Легирующие компоненты сплава также должны иметь небольшое сечение захвата тепловых нейтронов (принципиальное свойство), чтобы соответствовать в этом цирконию, а не ухудшить металл. По этому показателю для легирования не подходит тантал, вольфрам, кобальт.
  3. Заданные механические параметры оболочек, которые бы гарантировали надежность работы твэлов при любых режимах эксплуатации реактора (включая скачки мощности, аварийные ситуации).

Из циркониевых сплавов для нужд атомной энергетики изготавливаются различные виды изделий

  • дистанцирующие решетки сотового типа – из труб, и из полос для тепловыделяющих сборок;
  • оболочечные трубы из цилиндрических, конических и литых заготовок;
  • каналы, кассеты.

Изделия из циркония для атомной промышленности

Рисунок 2. Изделия из циркония для атомной промышленности

Постепенно лидирующей технологией изготовления стала прокатка, а не ковка тяжелых слитков (что облегчило работу). Плюс изделия, полученные прокаткой, отличало такое же качество, коррозионное поведение и механические свойства, а сплав Э110 показал себя более однородным. Сейчас циркониевые сплавы получают в электронно- лучевых и дуговых вакуумных печах с расходуемым электродом.

Что производят из циркония для ядерной промышленности

  1. Циркониевые слитки из сплавов Э110, 125, 635 массой от 1 до 3,5 кг – это исходное сырье, из которого производится различная продукция под нужды атомной энергетики и тяжелой промышленности.
  2. Коррозионностойкие трубы и трубки, бесшовные и оболочечные. Последние применяются как оболочки твэлов в ядерных реакторах.
  3. Круги, прутки обычной и повышенной точности различного диаметра и длины (до 7400 мм). Прутки становятся заготовкой для производства разнообразных элементов и приспособлений в активной зоне реактора.
  4. Стойкие к коррозии листы холоднокатаные для кожухов тепловыделяющих кассет атомных реакторов (длина до 3680 мм).
  5. Проволока холоднотянутая, изготовленная методом холодного волочения, диаметром до 3 мм и длиной не менее 2000 мм.
  6. Циркониевая губка.

Цирконий был и продолжает оставаться жизненно важным металлом для ядерной энергетики. Внедрение современных технологий ставит все более высокую планку в производстве изделий из циркония, а это позволяет гарантировать их надежность и эффективность в любых отраслях применения.

"Метотехника" ®
e-mail: info@metotech.ru

телефоны:
8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95

Нихром :: Фехраль :: Нихром в изоляции :: Титан :: Вольфрам :: Молибден :: Кобальт :: Термопары :: Термопары нагревостойкие :: Никель :: Монель :: Константан :: Мельхиор :: Твердые сплавы :: Порошки металлов :: Нержавеющая сталь :: Жаропрочные сплавы :: Ферросплавы :: Олово :: Тантал :: Ниобий :: Ванадий :: Хром :: Рений :: Прецизионные сплавы :: Цирконий :: Обзор цен на металлы и ферросплавы :: Карта сайта
                     Яндекс цитирования
Метотехника® Все права защищены