ПРОДУКЦИЯ

НИХРОМ

ФЕХРАЛЬ

НИХРОМ В ИЗОЛЯЦИИ

ТИТАН

ВОЛЬФРАМ

МОЛИБДЕН

КОБАЛЬТ

ТЕРМОПАРЫ

ТЕРМОПАРЫ НАГРЕВОСТОЙКИЕ

НИКЕЛЬ

МОНЕЛЬ

КОНСТАНТАН

МЕЛЬХИОР

ТВЕРДЫЕ СПЛАВЫ

ПОРОШКИ МЕТАЛЛОВ

НЕРЖАВЕЮЩАЯ СТАЛЬ

ЖАРОПРОЧНЫЕ СПЛАВЫ

ФЕРРОСПЛАВЫ

ОЛОВО

ТАНТАЛ

НИОБИЙ

ВАНАДИЙ

ХРОМ

РЕНИЙ

ПРЕЦИЗИОННЫЕ СПЛАВЫ

ЦИРКОНИЙ


 

Имя*:

E-mail*:

Тема:

Сообщение*:

Код*:

 

8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95
logo
(800) 200-52-75
(495) 366-00-24
(495) 504-95-54

Вольфрам. Свойства, применение, производство, продукция

Статья "Вольфрам. Свойства, применение, производство, продукция" с различных сторон рассматривает тугоплавкий металл вольфрам. Для удобства чтения и изучения данная статья разделена на главы и параграфы, а также содержит графические материалы.

На странице представлена только выдержка из статьи "Вольфрам. Свойства, применение, производство, продукция".

Введение

В статье “Вольфрам. Свойства, применение, производство, продукция” подробно рассматривается тугоплавкий металл вольфрам. Описаны свойства вольфрама, указаны области его применения. Также перечислены различные марки вольфрама с указанием их особенностей.

Статья освещает процесс производства вольфрама от стадии обогащения руды до стадии получения заготовок в виде штабиков и слитков. Отмечаются характерные особенности каждой стадии.

Особое внимание в статье уделяется продукции (проволока, прутки, листы и др.). Описаны процессы изготовления той или иной продукции из вольфрама, ее характерные особенности и области применения.

Статья содержит ссылки на стандарты, такие как ГОСТ и ТУ, на другие статьи, описывающие смежные темы.

Глава 1. Вольфрам. Свойства и области применения вольфрама

Вольфрам (обозначается W) - химический элемент VI группы 6-го периода таблицы Д.И. Менделеева, имеет номер 74; переходный металл светло-серого цвета. Самый тугоплавкий металл, имеет температуру плавления tпл = 3380 °С. С точки зрения применения металла вольфрам его наиболее важными свойствами являются плотность, температура плавления, электрическое сопротивление, коэффициент линейного расширения.

§1. Свойства вольфрама

Свойство Значение
Физические свойства
Атомный номер 74
Атомная масса, а.е.м. (г/моль) 183,84
Атомный диаметр, нм 0,274
Плотность, г/см3 19,3
Температура плавления, °С 3380
Температура кипения, °С 5900
Удельная теплоемкость, Дж/(г•К) 0,147
Теплопроводность, Вт/(м•K) 129
Электрическое сопротивление, мкОм•см 5,5
Коэффициент линейного термического расширения, 10-6 м/мК 4,32
Механические свойства
Модуль Юнга, ГПа 415,0
Модуль сдвига, ГПа 151,0
Коэффициент Пуассона 0,29
Временное сопротивление σB, МПа 800-1100
Относительное удлинение δ, % 0

Металл отличается очень высокой точкой кипения (5900 °С) и весьма малой скоростью испарения даже при температуре 2000 °С. Электропроводность вольфрама почти в три раза ниже электропроводности меди. К свойствам, ограничивающим сферу применения вольфрама, можно отнести большую плотность, высокую склонность к ломкости при низких температурах, малое сопротивление окислению при невысоких температурах.

По внешнему виду вольфрам похож на сталь. Применяется для создания сплавов с высокой прочностью. Обработке (ковке, прокатке и волочению) вольфрам поддается только при нагреве. Температура нагрева зависит от типа обработки. Например, ковка прутков проводится при нагреве заготовки до 1450-1500 °С.

§2. Марки вольфрама

Марка вольфрама Характеристика марки Цель введения присадки
ВЧ Вольфрам чистый (без присадок) -
ВА Вольфрам с кремнещелочной и алюминиевой присадками Повышение температуры первичной рекристализации, прочности после отжига, формоустойчивости при высоких температурах
ВМ Вольфрам с кремнещелочной и ториевой присадками Повышение температуры рекристализации и увеличение прочности вольфрама при высоких температурах
ВТ Вольфрам с присадкой окиси тория Повышение эмиссионных свойств вольфрама
ВИ Вольфрам с присадкой окиси иттрия Повышение эмиссионных свойств вольфрама
ВЛ Вольфрам с присадкой окиси лантана Повышение эмиссионных свойств вольфрама
ВР Сплав вольфрама и рения Увеличение пластичности вольфрама после высокотемпературной обработки, повышение температуры первичной рекристаллизации, прочности при высоких температурах, удельного электросопротивления и т.э.д.с.
ВРН Вольфрам без присадки, в котором допускается повышенное содержание примесей -
МВ Сплавы молибдена и вольфрама Повышение прочности молибдена при сохранении пластичности после отжига

§3. Области применения вольфрама

Вольфрам получил широкое применение благодаря своим уникальным свойствам. В промышленности вольфрам используется в виде чистого металла и в ряде сплавов.

Основные направления применения вольфрама
1. Специальные стали
Вольфрам используется в качестве одного из основных компонентов или легирующего элемента при производстве быстрорежущих сталей (содержат 9-24% вольфрама W), а также инструментальных сталей (0,8-1,2% вольфрама W - вольфрамовые инструментальные стали; 2-2,7% вольфрама W - хромвольфрамкремнистые инструментальные стали (также содержат хром Cr и кремний Si); 2-9% вольфрама W - хромвольфрамовые инструментальные стали (также содержат хром Cr); 0,5-1,6% вольфрама W - хромвольфраммарганцевые инструментальные стали (также содержат хром Cr и марганец Mn). Из перечисленных сталей изготовляют сверла, фрезы, пуансоны, штампы и др. В качестве примеров быстрорежущих сталей можно привести Р6М5, Р6М5К5, Р6М5Ф3. Буква “Р” означает, что сталь быстрорежущая, буквы “М” и “К” - что сталь легирована молибденом и кобальтом соответственно. Также вольфрам входит в состав магнитных сталей, которые делятся на вольфрамовые и вольфрамкобальтовые.

2. Твердые сплавы на основе карбида вольфрама
Карбид вольфрама (WC, W2C) - соединение вольфрама с углеродом (см. Главу 3 §7). Он имеет высокую твердость, износостойкость и тугоплавкость. На его основе созданы самые производительные инструментальные твердые сплавы, которые содержат 85-95% WC и 5-14% Co. Из твердых сплавов изготовляют рабочие части режущих и буровых инструментов.

3. Жаропрочные и износостойкие сплавы
Данные сплавы используют тугоплавкость вольфрама. Распространенность получили сплавы вольфрама с кобальтом и хромом - стеллиты (3-5% W, 25-35% Cr, 45-65% Co). Их, обычно, с помощью наплавки наносят на поверхности сильно изнашивающихся деталей машин.

4. Контактные сплавы и “тяжелые сплавы”
К этим сплавам относятся сплавы вольфрама с медью и вольфрама с серебром. Это достаточно эффективные контактные материалы для изготовления рабочих частей рубильников, выключателей, электродов для точечной сварки и др.

5. Электровакуумная и электроосветительная техника
Вольфрам в виде проволоки, ленты и различных кованых деталей применяют в производстве электроламп, радиоэлектронике и рентгенотехнике. Вольфрам - лучший материал для нитей и спиралей накаливания. Вольфрамовая проволока и прутки служат электронагревателями для высокотемпературных печей (до ~3000 °С). Вольфрамовые нагреватели работают в атмосфере водорода, инертного газа или вакууме.

6. Сварочные электроды
Очень важной сферой применения вольфрама является сварка. Из вольфрама изготавливают электроды для дуговой сварки (см. Главу 3 §2). Вольфрамовые электроды являются неплавящимися.

Глава 2. Производство вольфрама

§1. Процесс получения тугоплавкого металла вольфрам

Вольфрам принято относить к широкой группе редких металлов . Помимо данного металла в эту группу входят молибден, рубидий и другие. Для редких металлов характерны сравнительно небольшие масштабы производства и потребления, а также малая распространенность в земной коре. Ни один редкий металл не получают непосредственным восстановлением из сырья. Сначала сырье перерабатывается на химические соединения. Кроме того, все редкометаллические руды подвергаются дополнительному обогащению перед переработкой.

В процессе получения редкого металла можно выделить три основных стадии:
  • Разложение рудного материала - отделение извлекаемого металла от основной массы перерабатываемого сырья и концентрирование его в растворе или осадке.
  • Получение чистых химических соединений - выделение и очистка химического соединения.
  • Выделение металла из полученного соединения - получение чистых редких металлов.
Процесс получения вольфрама также имеет несколько стадий. Исходным сырьем являются два минерала - вольфрамит (Fe, Mn)WO4 и шеелит CaWO4. Богатые вольфрамовые руды обычно имеют в своем составе 0,2 - 2 % вольфрама.
  • Обогащение вольфрамовой руды. Оно производится с помощью гравитации , флотации , магнитной или электростатической сепарации . В результате обогащения получают вольфрамовый концентрат, содержащий 55 - 65 % ангидрида (трехокиси) вольфрама WO3. В вольфрамовых концентратах контролируется содержание примесей - фосфора, серы, мышьяка, олова, меди, сурьмы и висмута.
  • Получение трехокиси (ангидрида) вольфрама WO3, который служит исходным сырьем для производства металлического вольфрама или его карбида. Для этого необходимо выполнить ряд действий, таких, как разложение концентратов, выщелачивание сплава или спека, получение технической вольфрамовой кислоты и др. В итоге должен получиться продукт, содержащий 99,90 - 99,95 % WO3.
  • Получение вольфрамового порошка. Чистый металл в виде порошка может быть получен из ангидрида вольфрама WO3. Для этого проводят процесс восстановления ангидрида водородом или углеродом. Восстановление углеродом применяется реже, так как при данном процессе WO3 насыщается карбидами, что делает металл более хрупким и ухудшает обрабатываемость. При получении вольфрамового порошка используют специальные методы, позволяющие контролировать его химический состав, размер и форму зерен, гранулометрический состав. Например, быстрое нарастание температуры, малая скорость подачи водорода способствуют увеличению размера частиц порошка.
  • Получение компактного вольфрама. Компактный вольфрам, как правило, в виде штабиков или слитков является заготовкой для производства полуфабрикатов, таких, как проволока, пруток, лента и так далее.

§2. Получение компактного вольфрама

Существуют два способа получения компактного вольфрама. Первый заключается в применении методов порошковой металлургии. Второй - с помощью плавки в электрических дуговых печах с расходуемым электродом.

Методы порошковой металлургии
Данный способ получения ковкого вольфрама является наиболее распространенным, так как позволяет более равномерно распределять присадки, которые придают вольфраму специальные свойства (жаропрочность, эмиссионные свойства и другие).

Процесс получения компактного вольфрама данным способом состоит из нескольких стадий:
  • прессование штабиков из металлического порошка;
  • низкотемпературное (предварительное) спекание заготовок;
  • спекание (сварка) заготовок;
  • обработка заготовок с целью получения полуфабрикатов - вольфрамовой проволоки, ленты, вольфрамовых прутков; обычно заготовки обрабатывают под давлением (ковкой) или подвергают механической обработке резанием (например, шлифование, полирование).
Штабики вольфрамовыеК вольфрамовому порошку предъявляются специальные требования. Используют порошки, восстановленные только водородом и содержащие не более 0,05% примесей.

С помощью описанного метода порошковой металлургии получают вольфрамовые штабики квадратного сечения от 8х8 до 40х40 мм и длиной 280-650 мм. При комнатной температуре они имеют хорошую прочность, но при этом очень хрупки. Стоит заметить, что прочность и хрупкость (противоположное свойство - пластичность) относятся к разным группам свойств. Прочность - механическое свойство материала, пластичность - технологическое. Пластичность определяет пригодность материала для ковки. Если материал плохо поддается ковке, то он является хрупким. Для улучшения пластичности вольфрамовые штабики подвергаются ковке в нагретом состоянии.

Однако, описанным выше способом нельзя изготовить крупногабаритные заготовки большой массы, что является существенным ограничением. Для получения крупногабаритных заготовок, масса которых достигает нескольких сот килограмм применяют гидростатическое прессование. Данный метод позволяет получать заготовки цилиндрического и прямоугольного сечения, трубы и другие изделия сложной формы. При этом они имеют равномерную плотность, не содержат трещин и прочих дефектов.

Плавка
Плавка используется для получения компактного вольфрама в виде крупногабаритных заготовок (от 200 до 3000 кг), предназначенных для проката, вытяжки труб, производства изделий методом литья. Осуществляется плавка в электрических дуговых печах с расходуемым электродом и/или электронно-лучевая плавка .

При дуговой плавке в качестве электродов служат пакеты спеченных штабиков или спеченные заготовки гидростатического прессования. Плавка осуществляется в вакууме или разреженной атмосфере водорода. В результате получаются вольфрамовые слитки. Слитки вольфрама имеют крупнокристаллическую структуру и повышенную хрупкость, что вызвано высоким содержанием примесей.

Для уменьшения содержания примесей вольфрам изначально плавят в электронно-лучевой печи. Но после данного типа плавки вольфрам также имеет крупнокристаллическую структуру. Поэтому затем с целью уменьшения размера зерна полученные слитки подвергают плавке в электрической дуговой печи, добавляя небольшие количества карбидов циркония или ниобия, а также легирующие элементы для придания специальных свойств.

Для получения мелкозернистых слитков вольфрама, а также изготовления деталей методом литья применяется дуговая гарниссажная плавка с разливкой металла в изложницу.

Глава 3. Продукция из вольфрама. Прутки, проволока, полосы, порошок

§1. Вольфрамовые прутки

Прутки вольфрамовые Производство
Вольфрамовые прутки - один из самых распространенных видов продукции из тугоплавкого металла вольфрам. Исходным материалом для производства прутков является штабик.

Для получения вольфрамовых прутков штабик подвергают ковке на ротационной ковочной машине. Ковка осуществляется в нагретом состоянии, так как при комнатной температуре вольфрам очень хрупкий. Можно выделить несколько этапов ковки. На каждом следующем этапе получают прутки меньшего диаметра, чем на предыдущем.

При первой ковке можно получить вольфрамовые прутки диаметром до 7 мм (при условии, что штабик имеет длину стороны 10-15 см). Ковку осуществляют при температуре заготовки 1450-1500 °С. В качестве материала нагревателя обычно используется молибден. После второй ковки получают прутки диаметром до 4,5 мм. Ее производят при температуре штабика 1300-1250 °С. При дальнейшей ковке получают вольфрамовые прутки диаметром до 2,75 мм. Стоит отметить, что вольфрамовые прутки марок ВТ, ВЛ и ВИ получают при более высокой температуре, чем прутки марок ВА и ВЧ.

Если в качестве исходной заготовки используют слитки из вольфрама, которые получают путем плавки, то горячую ковку не осуществляют. Это связано с тем, что данные слитки имеют грубую крупнокристаллическую структуру, и их горячая ковка может привести к образованию трещин и разрушению.

В таком случае вольфрамовые слитки подвергают двойному горячему прессованию (степень деформации около 90%). Первое прессование производится при температуре 1800-1900 °С, второе - 1350-1500 °С. Затем заготовки подвергают горячей ковке для получения прутков из вольфрама.

Применение
Вольфрамовые прутки нашли широкое применение в различных отраслях промышленности. Одно из наиболее распространенных применений - неплавящиеся сварочные электроды. Для таких целей подходят прутки из вольфрама марок ВТ, ВИ, ВЛ. Также вольфрамовые прутки марок ВА, ВР, МВ используются в качестве нагревателей. Нагреватели из вольфрама работают в печах до 3000 °С в атмосфере водорода, инертного газа или в вакууме. Прутки из вольфрама могут служить катодами радиоламп, электронных и газоразрядных приборов.

§2. Вольфрамовые электроды

Дуговая сварка
Сварочные электроды являются одними из важнейших компонентов, необходимых для сварки. Наиболее широко они применяются при дуговой сварке. Она относится к термическому классу сварки, в котором плавление осуществляется за счет термической энергии. Дуговая сварка (ручная, полуавтоматическая и автоматическая) является наиболее распространенным технологическим процессом сварки. Тепловая энергия создается вольтовой дугой, которая горит между электродом и изделием (деталью, заготовкой). Дуга - мощный стабильный электрический разряд в ионизированной атмосфере газов, паров металла. Электрод подводит электрический ток к месту сварки, чтобы получить дугу.

Сварочные электроды
Сварочный электрод - проволочный стержень с нанесенным на него покрытием (или без покрытия). Существует большое количество разнообразных электродов для сварки. Они различаются по химическому составу, длине, диаметру, определенный тип электродов подходит для сварки определенных металлов и сплавов и. т.д. Разделение электродов сварочных на плавящиеся и неплавящиеся является одним из важнейших видов их классификации.

Плавящиеся сварочные электроды расплавляются в процессе сварки, их металл вместе с расплавленным металлом свариваемой детали идет на пополнение сварочной ванны. Такие электроды выполняют из стали и меди.

Неплавящиеся электроды не расплавляются во время сварки. К данному типу можно отнести угольные и вольфрамовые электроды. При сварке с использованием неплавящихся вольфрамовых электродов необходима подача присадочного материала (обычно это сварочная проволока или пруток), который расплавляется и вместе с расплавленным материалом свариваемой детали образует сварочную ванну.

Также, электроды для сварки бывают покрытые и непокрытые. Покрытие имеет важную роль. Его составляющие могут обеспечить получение металла швов заданных состава и свойств, стабильное горения дуги, защиту расплавленного металла от воздействия воздуха. Соответственно составляющие покрытия могут быть легирующими, стабилизирующими, газообразующими, шлакообразующими, раскисляющими, а само покрытие - кислым, рутиловым, основным или целлюлозным.

Сварочные вольфрамовые электроды
Как было отмечено ранее вольфрамовые электроды являются неплавящимися и при сварке используются вместе с присадочной проволокой. Данные электроды, в основном, применяются для сварки цветных металлов и их сплавов (вольфрамовый электрод с присадкой циркония), высоколегированных сталей (вольфрамовый электрод с присадкой тория ЭВТ), а также вольфрамовый электрод хорошо подходит для получения сварного шва повышенной прочности, причем свариваемые детали могут быть разного химического состава.

Довольно распространенной является сварка с использованием вольфрамовых электродов в среде аргона. Данная среда положительно влияет на процесс сварки и качество сварного шва. Вольфрамовые электроды могут быть сделаны из чистого вольфрама или содержать различные присадки, которые улучшают качество процесса сварки и сварного шва. Особенностью неплавящихся сварочных электродов из чистого вольфрама (например, вольфрамовый электрод марки ЭВЧ) является не очень хорошая зажигаемость дуги.

Зажигание дуги проходит в три этапа:
  • короткое замыкание электрода на заготовку;
  • отвод электрода на незначительное расстояние;
  • возникновение устойчивого дугового разряда.

Для улучшения зажигаемости дуги и достижения высокой стабильности дуги во время сварки в электроды из вольфрама добавляют цирконий. Торирование (вольфрамовый электрод ЭВТ-15) также улучшает зажигаемость дуги и увеличивает срок службы сварочных электродов. Добавление в вольфрамовые электроды иттрия (вольфрамовый электрод ЭВИ-1, ЭВИ-2, ЭВИ-3) позволяет использовать их в различных токовых средах. Например, может быть дуга переменного или постоянного тока. В первом случае сварочная дуга питается от источника переменного тока. Различают однофазное и трехфазное питание дуги. Во втором - от источника постоянного тока.

Аргонодуговая сварка (Дуговая сварка неплавящимся вольфрамовым электродом в среде аргона) Данный вид сварки хорошо зарекомендовал себя при сваривании цветных металлов таких, как молибден, титан, никель, а также высоколегированных сталей. Это разновидность дуговой сварки, где источником высокой температуры, необходимой для создания сварочной ванны, является электрический ток. В данном виде аргонодуговой сварки основными элементами являются вольфрамовый электрод и инертный газ аргон. Аргон во время сварки подается на вольфрамовый электрод и защищает его, зону дуги и сварочную ванну от атмосферной газовой смеси (азот, водород, углекислый газ). Данная защита намного повышает качественные характеристики сварного шва, а также предохраняет сварочные вольфрамовые электроды от быстрого сгорания в среде воздуха. Газ аргон может применяться при сварке большого количества металлов и сплавов, так как он является инертным.

Стандарты для вольфрамовых электродов
В России неплавящиеся вольфрамовые электроды производятся в соответствии с требованиями стандартов и технических условий. Среди них: ГОСТ 23949-80 “Электроды вольфрамовые сварочные неплавящиеся. Технические условия”; ТУ 48-19-27-88 “Вольфрам лантанированный в виде прутков. Технические условия”; ТУ 48-19-221-83 “Прутки из иттрированного вольфрама марки СВИ-1. Технические условия”; ТУ 48-19-527-83 “Электроды вольфрамовые сварочные неплавящиеся ЭВЧ и ЭВЛ-2. Технические условия”.

§3. Вольфрамовая проволока

Проволока вольфрамовая Производство
Вольфрамовая проволока - один из самых распространенных видов продукции из данного тугоплавкого металла. Исходным материалом для ее изготовления являются кованые вольфрамовые прутки диаметром 2,75 мм.

Волочение проволоки производится при температуре 1000 °С в начале процесса и 400-600 °С - в конце. При этом нагревается не только проволока, но и фильера. Нагрев осуществляется пламенем газовой горелки или электрическим нагревателем.

Волочение проволоки диаметром до 1,26 мм ведут на прямолинейном цепном волочильном стане, в пределах диаметра 1,25-0,5 мм - на блочном стане с диаметром катушки ~1000 мм, диаметра 0,5-0,25 - на машинах однократного волочения.

В результате ковки и волочения структура заготовки превращается в волокнистую, которая состоит из осколков кристаллов, вытянутых вдоль оси обработки. Такая структура приводит к резкому повышению прочности проволоки из вольфрама.

После волочения вольфрамовая проволока покрыта графитовой смазкой. Поверхность проволоки необходимо очистить. Очистку производят с помощью отжига, химического или электролитического травления, электролитической полировки. Полировка может увеличить механическую прочность вольфрамовой проволоки на 20-25%.

Применение
Вольфрамовая проволока используется для изготовления элементов сопротивления в нагревательных печах, работающих в атмосфере водорода, нейтрального газа или в вакууме при температурах до 3000 °С. Также проволока из вольфрама служит для производства термопар. Для этого используются вольфрам-рениевый сплав с 5% рения и вольфрам-рениевый сплав с 20% рения (ВР 5/20).

В ГОСТ 18903-73 “Проволока вольфрамовая. Сортамент” указаны области применения проволоки марок ВА, ВМ, ВРН, ВТ-7, ВТ-10, ВТ-15. Вольфрамовая проволока ВА в зависимости от группы, состояния поверхности и металла, диаметра применяется для изготовления спиралей ламп накаливания и других источников света, спиралеобразных катодов и подогревателей электронных приборов, пружин полупроводниковых приборов, петлевых подогревателей, неспиралеобразных катодов, сеток, пружин электронных приборов. Проволока марки ВРН применяется при получении вводов, траверсов и других деталей приборов, не требующих применения вольфрама со специальными присадками.

§4. Вольфрамовый порошок

Порошок вольфрамовый Чистый вольфрамовый порошок служит исходным сырьем для производства компактного вольфрама (см. Главу 2). Карбид вольфрама WC, котрый по внешнему виду также представляет из себя порошок, используют для изготовления твердых сплавов.

В зависимости от назначения порошки вольфрама различают по средней величине частиц, набору зерен и другим параметрам.

Основная примесь в вольфрамовых порошках - кислород (0,05 - 0,3%). Металлические примеси содержатся в вольфрамовых порошках в очень малых количествах. Часто в порошки вольфрама вводят присадки из других металлов, которые улучшают определенные свойства конечного продукта. В качестве присадок часто используют алюминий, торий, лантан и другие.

Вольфрамовый порошок ВА, который применяется для изготовления проволоки, содержит равномерно распределенную кремнещелочную и алюминиевую присадки (0,32% K2O; 0,45% SiO2; 0,03% Al2O3), порошок из тугоплавкого металла вольфрам марки ВТ - присадку окиси тория (0,7 - 5%), ВЛ - присадку оскиси лантана (~1% La2O3), ВИ - присадку окиси иттрия (~3% Y2O3), ВМ - кремнещелочную и ториевую присадки (0,32% K2O; 0,45% SiO2; 0,25% ThO2).

§5. Вольфрамовые полосы (листы, ленты, фольга, пластины)

Листы вольфрамовые Производство
Как правило, плоский прокат из вольфрама - листы , ленты , пластины, фольга - получают применением двух операций - плоская ковка и прокатка. В качестве заготовки используются вольфрамовые штабики различных размеров.

Сначала штабики из вольфрама подвергаются плоской ковке пневматическим молотом. Ковку ведут при температуре 1500-1700 °С, которая по мере деформации уменьшается до 1200-1300 °С. Операция ковки продолжается до получения поковки толщиной 8-10 мм (при сечении штабика 25х25 мм) или 4-5 мм (при сечении штабика 12х12 мм).

Затем полученные поковки подвергают прокатке на прокатных станах. В начале процесса прокатки заготовки нагревают до 1300-1400 °С, затем понижают температуру до 1000-1200 °С. С помощью горячей прокатки получают вольфрамовые листы, ленты и пластины толщиной до 0,6 мм. Для получения листов, лент и пластинок меньшего размера проводят холодную прокатку. Для получения тонких листов из вольфрама толщиной до 0,125 мм и ленты (фольги) толщиной 0,02-0,03 мм применяют прокатку в пакетах. Пакет состоит из нескольких вольфрамовых лент равной толщины и более толстых молибденовых пластин, которые лежат поверх лент из вольфрама. Молибденовые пластины более пластичны и быстрее деформируются, чем вольфрамовые. В результате во время прокатки они становятся тоньше, чем вольфрамовые ленты. Через один или несколько переходов молибденовые пластины приходится заменять новыми так, чтобы толщина пакета оставалась приблизительно постоянной. Стоит отметить, что целью данного процесса является изготовление именно тонкой вольфрамовой ленты (фольги). Молибденовые пластины здесь являются расходным материалом, который необходим для осуществления прокатки в пакетах.

Заготовками для вольфрамовой ленты, пластин и листов также могут служить слитки из вольфрама, которые получают методом плавки (см. Главу 2). Слитки предварительно прессуют. Из слитков диаметром 70-80 мм прессованием получают прямоугольные заготовки толщиной 20-25 мм и шириной 50-60 мм. Затем заготовки деформируют на двухвалковых прессах.

Вольфрамовые листы В-МП
Вольфрамовые листы В-МП получили широкое распространение в промышленности. Они производятся из порошка вольфрама марок ПВ1 и ПВ2, содержащего 99,98% W. Листы и пластины В-МП должны иметь толщину 0,5-45 мм, обрезанные кромки. Листы могут быть механически обработанны в соответствии с требованиями заказчика. ГОСТ 23922-79 “Листы из вольфрама марки В-МП. Технические условия”.

Применение
Благодаря высокой жаропрочности вольфрамовые листы, как и другая продукция из данного тугоплавкого металла, применяются в условиях экстремально высоких температур. Из вольфрамовых листов изготавливается различная оснастка для высокотемпературных печей - тепловые экраны, подставки и другие элементы крепления. Распыляемые мишени из вольфрама, которые выполнены в виде пластин, используются для тонких барьерных пленок при металлизации полупроводниковых компонентов интегральных схем. В ядерной энергетике вольфрамовые листы используются в качестве экранов для ослабления потока радиоактивного излучения.

§6. Сплавы вольфрама с рением

В отдельный параграф стоит вынести сплавы вольфрама с рением и продукцию из этих сплавов. Более подробно здесь будут рассмотрены сплавы марок ВР5 и ВР20.

Сплавы двух данных металлов относятся к жаропрочным. Легирование вольфрама другими металлами снижает температуру его плавления. Но при легировании тугоплавким металлом температура плавления сплава снижается не так значительно. Вольфрам (W) и рений (Re) - тугоплавкие металлы.

При использовании рения в качестве присадки наблюдается “рениевый эффект”. 5% рения повышают жаропрочность и пластичность вольфрама. При 20-30% содержания рения наблюдается оптимальное сочетание прочности и пластичности с высокой технологичностью. Также к достоинствам вольфрам-рениевых сплавов можно отнести малую скорость испарения при температурах эксплуатации и высокое электрическое сопротивление.

Сплавы вольфрама с рением, как и компактный вольфрам, получают методами порошковой металлургии и плавки.

Интересной областью применения данных сплавов является измерение температуры. Вольфрамо-рениевая проволока ВР5 (5% Re, остальное - W) и ВР20 (20% Re, остальное - W) используются для изготовления высокотемпературных термопар.

Основным достоинством таких термопар является диапазон измеряемых температур. Поскольку сплавы ВР 5/20 являются жаропрочными, то с помощью термопар, сделанных из соответствующей проволоки, можно измерять температуры больше 2000 °С. Однако термопары данного вида должны находиться в инертной среде.

Наиболее часто для изготовления термопар используется вольфрамо-рениевая термоэлектродная проволока ВР5, ВР20 Ø 0,2; 0,35; 0,5 мм.

§7. Карбиды вольфрама

Очень важными с практической точки зрения являются соединения вольфрама с углеродом - карбиды вольфрама. Вольфрам образует два карбида - W2C и WC. Указанные карбиды различаются растворимостью в карбидах других тугоплавких металлов и химическим поведением в различных кислотах. Карбиды вольфрама, подобно карбидам других тугоплавких металлов, обладают металлической проводимостью и положительным коэффициентом электросопротивления. Тугоплавкость и высокая твердость карбидов обусловлены прочными межатомными связями в их кристаллах. Причем высокая твердость карбида WC сохраняется и при повышенных температурах.

Наиболее распространенный способ получения карбидов вольфрама WC и W2C - прокаливание смеси порошкообразного вольфрама с сажей в интервале температур 1000-1500 °С.

Карбиды вольфрама WC и W2C применяются в основном для изготовления твердых сплавов.

Твердые сплавы
Можно выделить 2 группы твердых сплавов на основе карбида вольфрама:
  • литые твердые сплавы (часто называемые литыми карбидами вольфрама);
  • спеченные твердые сплавы.
Литые твердые сплавы получают методом литья. Для получения сплава обычно исходят из порошкообразного вольфрама, карбида с недостатком углерода (до 3% C) или смеси WC + W, в которой содержание углерода не превышает 3%. Мелкозернистая структура карбидов данного типа обеспечивает более высокую твердость и износоустойчивость сплава. Однако литые сплавы достаточно хрупкие. Это обстоятельство ограничивает их применение. Главным образом, литые твердые сплавы применяются при изготовлении буровых инструментов и волок для тонкого волочения проволоки.

Спеченные твердые сплавы сочетают в себе монокарбид вольфрама WC и цементирующий металл-связку, которым обычно служит кобальт, реже - никель. Такие сплавы могут быть получены только методом порошковой металлургии. Порошок карбида вольфрама и порошок кобальта или никеля смешивают, прессуют в изделия необходимой формы, а затем спекают при температурах близких к температуре плавления цементирующего металла. Помимо высокой твердости и износоустойчивости данные сплавы обладают хорошей прочностью. Спеченные твердые сплавы являются наиболее производительными современными инструментальными материалами для обработки металлов резанием. Также они используются для изготовления волок, штампов, бурового инструмента. Среди твердых сплавов, для производства котрых используется карбид вольфрама, стоит выделить сплавы группы ВК - вольфрамокобальтовые твердые сплавы. Широкое распространение в промышленности получили сплавы ВК8 и ВК6. Из них изготовляют резцы, сверла, фрезы, а также другой режущий и буровой инструмент.

Заключение

В данной статье рассмотрены различные аспекты, связанные с тугоплавким металлом ВОЛЬФРАМ - свойства, области применения, производство, продукция.

Как описано в статье, процесс получения данного металла состоит из многих стадий и является достаточно трудоемким. Авторы постарались выделить наиболее значимые этапы производства вольфрама и обратить внимание на важные особенности.

Обзор свойств и областей применения вольфрама показывает, что это очень важный материал, без которого в некоторых отраслях промышленности просто невозможно обойтись. Он обладает уникальными свойствами, которые в некоторых ситуациях нельзя получить путем применения других материалов.

Обзор выпускаемой промышленностью продукции из вольфрама - проволоки, прутков, листов, порошка - позволяет лучше понять ее особенности, важные свойства и конкретные применения.

Авторы надеются, что приведенный в статье материал будет интересен и полезен читателям. Свои замечания и предложения читатели могут присылать на адрес info@metotech.ru.

Список литературы

  • Зеликман А.Н., Никитина А.С. “Вольфрам”.
  • Уткин Н.И. “Металлургия цветных металлов”.
  • Третьяков А.Ф. Курс лекций по дисциплине "Технология конструкционных материалов".
  • Агте К., Вацек И. “Вольфрам и молибден”.
  • http://ru.wikipedia.org
  • http://www.metotech.ru

"Метотехника" ®
e-mail: info@metotech.ru

телефоны:
8 (800) 200-52-75
(495) 366-00-24
(495) 504-95-54
(495) 642-41-95

Нихром :: Фехраль :: Нихром в изоляции :: Титан :: Вольфрам :: Молибден :: Кобальт :: Термопары :: Термопары нагревостойкие :: Никель :: Монель :: Константан :: Мельхиор :: Твердые сплавы :: Порошки металлов :: Нержавеющая сталь :: Жаропрочные сплавы :: Ферросплавы :: Олово :: Тантал :: Ниобий :: Ванадий :: Хром :: Рений :: Прецизионные сплавы :: Цирконий :: Обзор цен на металлы и ферросплавы :: Карта сайта
                     Яндекс цитирования
Метотехника® Все права защищены